Respuesta :
ht + 16t2 - 64t - 80 = 0
ht - (((0 - 24t2) + 64t) + 80) = 0
3.1 Solve ht+16t2-64t-80 = 0
theres no solution found honey
ht - (((0 - 24t2) + 64t) + 80) = 0
3.1 Solve ht+16t2-64t-80 = 0
theres no solution found honey
1) we calculate the first derivative:
h´(x)=-32t+64
2) we equalized to "0" the first derivative, and find out the value of "t".
-32t+64=0
-32t=-64
t=-64/-32
t=2
3) we calculate the second derivative:
h´´=-32<0 ⇒ then , we have a maximum at t=(2)
4) we calculate the height at t=2
h(2)=-16(2)²+64(2)+80=-32+128+80=176.
Answer: the maximum height is 176 m.
h´(x)=-32t+64
2) we equalized to "0" the first derivative, and find out the value of "t".
-32t+64=0
-32t=-64
t=-64/-32
t=2
3) we calculate the second derivative:
h´´=-32<0 ⇒ then , we have a maximum at t=(2)
4) we calculate the height at t=2
h(2)=-16(2)²+64(2)+80=-32+128+80=176.
Answer: the maximum height is 176 m.