Respuesta :
135 cubes are required to fill the prism
Solution:
Given that a rectangular prism with volume of 5 cubic units is filled with cubes with side lengths of [tex]\frac{1}{3}[/tex] units
Then the number of cubes required to fill the prism will be given by:
[tex]\text { number of cubes }=\frac{\text {volume of rectangular prism}}{\text {volume of cube}}[/tex]
Volume of rectangular prism = 5 cubic units
[tex]\text{ Volume of cube}=(\text { side })^{3}$[/tex]
[tex]\text { Volume of cube }=\left(\frac{1}{3}\right)^{3}=\frac{1}{27}[/tex]
Therefore number of cubes required to fill the prism are:
[tex]\text { number of cubes }=\frac{5}{\frac{1}{27}}=5 \times 27=135[/tex]
Therefore 135 cubes are required to fill the prism