Respuesta :

Answer:

A = π/6 + kπ, or A = 2π/3 + kπ

Step-by-step explanation:

tan A / (1 − tan² A) = √3 / 2

Cross multiply and simplify:

√3 (1 − tan² A) = 2 tan A

√3 − √3 tan² A = 2 tan A

3 − 3 tan² A = 2√3 tan A

0 = 3 tan² A + 2√3 tan A − 3

Solve with quadratic formula:

tan A = [ -2√3 ± √((2√3)² − 4(3)(-3)) ] / 2(3)

tan A = [ -2√3 ± √(12 + 36) ] / 6

tan A = (-2√3 ± √48) / 6

tan A = (-2√3 ± 4√3) / 6

tan A = -√3 or √3/3

Solve for A:

A = 2π/3 + kπ, or A = π/6 + kπ