Answer:
Small candies [tex]=9[/tex]
Extra large candies [tex]=12[/tex]
Step-by-step explanation:
Let small candies [tex]=x[/tex]
Extra large candies [tex]=y[/tex]
the number of candies is at least [tex]20[/tex].
[tex]x+y\geq20[/tex]
Cost of [tex]1[/tex] small candy [tex]=\$4[/tex]
Cost of [tex]1[/tex] extra large candy [tex]=\$12[/tex]
but she has only [tex]\$180[/tex] to spend
[tex]4x+12y\leq180[/tex]
Solve for
[tex]x+y=20.......(1)\\4x+12y=180.....(2)\\eqn(2)-eqn(1)\times4\\8y=100\\y=\frac{100}{8} \\y=\frac{25}{8} \\from\ eqn(1)\\x+\frac{25}{2}=20\\ x=20-\frac{25}{2} \\x=\frac{15}{2}[/tex]
Since number of candies should be integer.
let [tex]x=7,y=13[/tex]
total spend [tex]4\times7+12\times13=184 [/tex] which is more than [tex]\$180[/tex], so this combination is not possible.
[tex]let\ x=8,y=12\\8\times4+12\times12=176<180[/tex]
She has [tex]\$4[/tex] more so she can buy [tex]1[/tex] more small candy.
Hence small candy [tex]=9[/tex]
extra large candy [tex]=12[/tex]