following frequency distribution shows the daily expenditure on milk of 30 households in a locality:Daily expenditure on milk(in Rs):0-30,30-60,60-90,90-120,120-150 No.of households:5,6,9,6,4

Respuesta :

Note: As you missed to identify what we have to find in this question. But, after a little research, I am able to find that we had to find the Mode for the data given in your question. So, I am assuming we have to calculate the the Mode. Hopefully, it would clear your concept regarding this topic.

Answer:

The mode of the data = 75

Step-by-step explanation:

Lets visualize the given data in a table to show the frequency distribution:

Daily expenditure on milk (in Rs)           Number of households

                 0-30                                                           5

                30-60                                                          6        

                60-90                                                          9

                90-120                                                         6

                120-150                                                        4

Here the maximum frequency is 9.

So, modal class is 60-90.

As the formula to calculate the mode:

[tex]Mode = l_{1} + h (\frac{f_{1}-f_{0}}{2f_{1}-f_{0}-f_{2}} )[/tex]

Here, the maximum

[tex]l_{1} =60, f_{1} =9, f_{0}=6, f_{0}=6, h=30[/tex]

[tex]l=[/tex] is the lower limit of the class

[tex]f_{1} =[/tex] is the frequency of the modal class

[tex]f_{0} =[/tex] is the frequency of the previous modal class

[tex]f_{2} =[/tex] is the frequency of the next previous modal class

[tex]l=[/tex] is the class size

So,

[tex]Mode = l_{1} + h (\frac{f_{1}-f_{0}}{2f_{1}-f_{0}-f_{2}} )[/tex]

[tex]Mode = 60 + 30 (\frac{9-6}{2(9)-6-6} )[/tex]

[tex]Mode = 60 + \frac{(30)(3)}{6}[/tex]

[tex]Mode = 60 + 15=75[/tex]

∴ The mode of the data = 75

Keywords: mode, frequency distribution

Learn more about mode and frequency distribution from brainly.com/question/14354368

#learnwithBrainly