Respuesta :

frika

Answer:

[tex]y^4+1+\dfrac{1}{y^4}[/tex]

Step-by-step explanation:

Consider expression

[tex]y^7-\dfrac{1}{y^5}[/tex]

Rewrite it:

[tex]\dfrac{y^7\cdot y^5-1}{y^5}=\dfrac{y^{12}-1}{y^5}[/tex]

Consider the numerator:

[tex]y^{12}-1=(y^4)^3-1^3[/tex]

Use formula:

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

So,

[tex](y^4)^3-1^3=(y^4-1)((y^4)^2+y^4\cdot 1+1^2)=(y^4-1)(y^8+y^4+1)[/tex]

Now,

[tex]\dfrac{y^7\cdot y^5-1}{y^5}=\dfrac{(y^4-1)(y^8+y^4+1)}{y^5}=\dfrac{y^4-1}{y}\cdot \left(y^4+1+\dfrac{1}{y^4}\right)[/tex]

Hence,

[tex]GCF(y^7-\frac{1}{y^5}, y^4+1+\frac{1}{y^4})=y^4+1+\dfrac{1}{y^4}[/tex]

Answer:

Step-by-step explanation:

Consider expression

Rewrite it:

Consider the numerator:

Use formula:

So,

Now,

Hence,

Answer:

Step-by-step explanation: