Respuesta :

Answer:

[tex]m\angle KLM=53.13^o[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

Find the measure of angle KOM

In the triangle KOM

we have

[tex]KO=MO=r=5\ units[/tex]

[tex]KM=8\ units[/tex]

Applying the law of cosines

[tex]8^2=5^2+5^2-2(5)(5)cos(KOM)[/tex]

[tex]64=50-50cos(KOM)[/tex]

[tex]50cos(KOM)=50-64[/tex]

[tex]50cos(KOM)=-14[/tex]

[tex]cos(KOM)=-14/50[/tex]

[tex]m\angle KOM=cos^{-1}(-14/50)[/tex]

[tex]m\angle KOM=106.26^o[/tex]

step 2

Find the measure of the arc KM

we know that

[tex]arc\ KM=m\angle KOM[/tex] ----> by central angle

we have

[tex]m\angle KOM=106.26^o[/tex]

so

[tex]arc\ KM=106.26^o[/tex]

step 3

Find the measure of angle KLM

we know that

The inscribed angle is half that of the arc comprising  

[tex]m\angle KLM=\frac{1}{2}[arc\ KM][/tex]

we have

[tex]arc\ KM=106.26^o[/tex]

substitute

[tex]m\angle KLM=\frac{1}{2}[106.26^o][/tex]

[tex]m\angle KLM=53.13^o[/tex]

Ver imagen calculista