Answer:
[tex]y-2=-5(x - 2)[/tex]
Step-by-step explanation:
Given:
The equations given are:
[tex]y-2=-5(x - 2)\\X+ 7 = -4(X + 8)\\y - 3 = y(x + 4)\\y + 9 = x(x - 1)[/tex]
Now, a linear function is of the form:
[tex]y=mx+b[/tex]
Where, 'm' and 'b' are real numbers and [tex]m\ne0[/tex]
Equation 1: [tex]y-2=-5(x - 2)[/tex]
Simplifying using distributive property, we get:
[tex]y-2=-5x+10\\y=-5x+10+2\\y=-5x+12[/tex]
The above equation is of the form [tex]y=mx+b[/tex]. So, it represents a linear function.
Equation 2: [tex]X+ 7 = -4(X + 8)[/tex]
Here, both sides of the equation has same variable 'X'. So, it will form an equation of 1 variable. So, it's not a linear function.
Equation 3: [tex]y - 3 = y(x + 4)[/tex]
Simplifying the above equation. This gives,
[tex]y-3=yx+4y\\y-4y-yx=3\\y(1-4-x)=3\\y(-3-x)=3\\y=\frac{3}{(-3-x)}[/tex]
This is not of the form of the linear function. So, it is also not a linear function.
Equation 4: [tex]y + 9 = x(x - 1)[/tex]
Simplifying the above equation. This gives,
[tex]y+9=x^2-x\\y=x^2-x-9[/tex]
This is not of the form of the linear function. So, it is also not a linear function.