If g(x) is the inverse of f(x) and S(x) = 4x+12, what is g(x)?
g(x) = 12x + 4
g(x) = 4x12
g(x) = x= 3
8(t) = 1x-3

Respuesta :

Answer:

[tex]g(x)=\frac{1}{4}x-3[/tex]

Step-by-step explanation:

we have

[tex]f(x)=4x+12[/tex]

Find the inverse

step 1

Let

y=f(x)

[tex]y=4x+12[/tex]

step 2

Exchange the variables  (x for y and y for x)

[tex]x=4y+12[/tex]

step 3

Isolate the variable y

we have

[tex]x=4y+12[/tex]

Subtract 12 both sides

[tex]x-12=4y[/tex]

Divide by 4 both sides

[tex]y=\frac{x-12}{4}[/tex]

simplify

[tex]y=\frac{1}{4}x-3[/tex]

step 4

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=\frac{1}{4}x-3[/tex]

we have that

[tex]g(x)=f^{-1}(x)[/tex]

therefore

[tex]g(x)=\frac{1}{4}x-3[/tex]