Answer:
[tex]x_{n+1} = x_{n} - \frac{f(x_{n} )}{f^{'}(x_{n})}[/tex]
[tex]x_{1} = -10[/tex]
[tex]x_{2} = -3.95[/tex]
Step-by-step explanation:
Generally, the Newton-Raphson method can be used to find the solutions to polynomial equations of different orders. The formula for the solution is:
[tex]x_{n+1} = x_{n} - \frac{f(x_{n} )}{f^{'}(x_{n})}[/tex]
We are given that:
f(x) = [tex]x^{2} + 21[/tex]; [tex]x_{0} = -21[/tex]
[tex]f^{'} (x)[/tex] = df(x)/dx = 2x
Therefore, using the formula for Newton-Raphson method to determine [tex]x_{1}[/tex] and [tex]x_{2}[/tex]
[tex]x_{1} = x_{0} - \frac{f(x_{0} )}{f^{'}(x_{0})}[/tex]
[tex]f(x_{0}) = x_{0} ^{2} + 21 = (-21)^{2} + 21 = 462[/tex]
[tex]f^{'}(x_{0}) = 2*(-21) = -42[/tex]
Therefore:
[tex]x_{1} = -21 - \frac{462}{-42} = -21 + 11 = -10[/tex]
Similarly,
[tex]x_{2} = x_{1} - \frac{f(x_{1} )}{f^{'}(x_{1})}[/tex]
[tex]f(x_{1}) = (-10)^{2} + 21 = 100+21 = 121[/tex]
[tex]f^{'}(x_{1}) = 2*(-10) = -20[/tex]
Therefore:
[tex]x_{2} = -10 - \frac{121}{20} = -10+6.05 = -3.95[/tex]