Answer:
Part 1) [tex]-\sqrt{15}[/tex]
Part 2) [tex]x=\frac{b+ac}{2c-ab}[/tex]
Step-by-step explanation:
Part 1) we know that
To put factor back into the square root, we have to put squared value
we have
[tex]-5\sqrt{0.6}[/tex]
Remember that
[tex]5=\sqrt{5^2}[/tex]
substitute in the expression above
[tex]-5\sqrt{0.6}=-\sqrt{(5^2)(0.6)}=-\sqrt{25*0.6}=-\sqrt{15}[/tex]
Part 2) we have
[tex]\frac{2x-a}{b}=\frac{ax+1}{c}[/tex]
Solve for x
That means----> Isolate the variable x
Multiply in cross
[tex](2x-a)c=(ax+1)b[/tex]
Apply distributive property
[tex]2cx-ac=abx+b[/tex]
Group terms
[tex]2cx-abx=b+ac[/tex]
Factor x left side
[tex]x(2c-ab)=b+ac[/tex]
Divide by (2c-ab) both sides
[tex]x=\frac{b+ac}{2c-ab}[/tex]