PLEASE HELP ASAP!!! WILL MARK BRAINLIEST!!!!
Put a positive factor back into the square root:
[tex]\sqrt[-5]{0.6}[/tex]
Solve for x
(2x-a)/b=(ax+1)/c, if ab ≠ 2c

Respuesta :

Answer:

Part 1) [tex]-\sqrt{15}[/tex]

Part 2) [tex]x=\frac{b+ac}{2c-ab}[/tex]

Step-by-step explanation:

Part 1) we know that

To put factor back into the square root, we have to put squared value

we have

[tex]-5\sqrt{0.6}[/tex]

Remember that

[tex]5=\sqrt{5^2}[/tex]

substitute in the expression above

[tex]-5\sqrt{0.6}=-\sqrt{(5^2)(0.6)}=-\sqrt{25*0.6}=-\sqrt{15}[/tex]

Part 2) we have

[tex]\frac{2x-a}{b}=\frac{ax+1}{c}[/tex]

Solve for x

That means----> Isolate the variable x

Multiply in cross

[tex](2x-a)c=(ax+1)b[/tex]

Apply distributive property

[tex]2cx-ac=abx+b[/tex]

Group terms

[tex]2cx-abx=b+ac[/tex]

Factor x left side

[tex]x(2c-ab)=b+ac[/tex]

Divide by (2c-ab) both sides

[tex]x=\frac{b+ac}{2c-ab}[/tex]