Factor completely: 2x4 − 32.
a 2(x2 − 4)(x2 + 4)
b 2(x − 2)(x + 2)(x2 + 4)
c 2(x − 2)(x + 2)(x + 2)(x + 2)
d 2(x − 2)(x + 2)(x2 − 4)

Respuesta :

Answer:

Option b) is correct.

The completed factor of given expression is  [tex]2(x-2)(x+2)(x^2+4)[/tex]

Step-by-step explanation:

Given expression is [tex]2x^4-32[/tex]

To find the completed factor for the given expression:

[tex]2x^4-32[/tex]:

Taking the common number "2" outside  to the above expression we get

[tex]2x^4-32=2(x^4-16)[/tex]

Now rewritting the above  expression as below

[tex]=2(x^4-2^4)[/tex]  (since 16 can be written as the number 2 to the power of 4)

[tex]=2((x^2)^2-(2^2)^2)[/tex]

The above expression is of the form [tex]a^2-b^2=(a+b)(a-b)[/tex]

Here [tex]a=x^2[/tex] and  [tex]b=2^2[/tex]

Therefore it becomes

[tex]=2(x^2+2^2)(x^2-2^2)[/tex]

[tex]=2(x^2+4)(x^2-2^2)[/tex]  

The above expression is of the form [tex]a^2-b^2=(a+b)(a-b)[/tex]

Here [tex]a=x[/tex] and  [tex]b=2[/tex]

Therefore it becomes

[tex]=2(x^2+4)(x+2)(x-2)[/tex]  

[tex]=2(x+2)(x-2)(x^2+4)[/tex]  

Therefore [tex]=2(x+2)(x-2)(x^2+4)[/tex]  

[tex]2x^4-32=2(x-2)(x+2)(x^2+4)[/tex]  

Option b) is correct.

The completed factor of given expression is  [tex]2(x-2)(x+2)(x^2+4)[/tex]

Answer:

b

Step-by-step explanation: