Respuesta :
Answer:
Option b) is correct.
The completed factor of given expression is [tex]2(x-2)(x+2)(x^2+4)[/tex]
Step-by-step explanation:
Given expression is [tex]2x^4-32[/tex]
To find the completed factor for the given expression:
[tex]2x^4-32[/tex]:
Taking the common number "2" outside to the above expression we get
[tex]2x^4-32=2(x^4-16)[/tex]
Now rewritting the above expression as below
[tex]=2(x^4-2^4)[/tex] (since 16 can be written as the number 2 to the power of 4)
[tex]=2((x^2)^2-(2^2)^2)[/tex]
The above expression is of the form [tex]a^2-b^2=(a+b)(a-b)[/tex]
Here [tex]a=x^2[/tex] and [tex]b=2^2[/tex]
Therefore it becomes
[tex]=2(x^2+2^2)(x^2-2^2)[/tex]
[tex]=2(x^2+4)(x^2-2^2)[/tex]
The above expression is of the form [tex]a^2-b^2=(a+b)(a-b)[/tex]
Here [tex]a=x[/tex] and [tex]b=2[/tex]
Therefore it becomes
[tex]=2(x^2+4)(x+2)(x-2)[/tex]
[tex]=2(x+2)(x-2)(x^2+4)[/tex]
Therefore [tex]=2(x+2)(x-2)(x^2+4)[/tex]
[tex]2x^4-32=2(x-2)(x+2)(x^2+4)[/tex]
Option b) is correct.
The completed factor of given expression is [tex]2(x-2)(x+2)(x^2+4)[/tex]