If you roll a pair of fair dice, what is the probability of each of the following? (round all answers to 4 decimal places, .XXXX)

a) getting a sum of 1?
b) getting a sum of 5?
c) getting a sum of 12?

Respuesta :

Answer:  The required probabilities are

[tex](a)~0\\\\(b)\dfrac{1}{9},\\\\(c)~\dfrac{1}{36}.[/tex]

Step-by-step explanation:  Given that a pair of fair dice is rolled.

We are to find the probability of getting

(a) getting a sum of 1.

b) getting a sum of 5.

c) getting a sum of 12.

Let S be the sample space for the experiment of rolling a pair of fair dice.

Then, S = {(1,1), (1,2), (1,3), (1, 4), (1,5), (1,6), .  . . , (6,5), (6,6)}.

And, n(S) =36.

(a) Let E denote the event of getting a sum of 1.

Since the sum of the numbers on two dice is minimum 2, so

E = { }  ⇒  n(E) = 0.

Therefore, the probability of event E is

[tex]P(E)=\dfrac{n(E)}{n(S)}=\dfrac{0}{36}=0.[/tex]

(b) Let F denote the event of getting a sum of 5.

Then,

F = {(1,4), (2,3), (3,2), (4,1)}  ⇒  n(F) = 4.

Therefore, the probability of event F is

[tex]P(F)=\dfrac{n(F)}{n(S)}=\dfrac{4}{36}=\dfrac{1}{9}.[/tex]

(c) Let G denote the event of getting a sum of 12.

Then,

G = {(6,6)}  ⇒  n(G) = 1.

Therefore, the probability of event G is

[tex]P(G)=\dfrac{n(G)}{n(S)}=\dfrac{1}{36}.[/tex]

Thus, the required probabilities are

[tex](a)~0\\\\(b)\dfrac{1}{9},\\\\(c)~\dfrac{1}{36}.[/tex]

The probability of getting a sum of 1, the sum of 5, and the sum of 12 are 0, 1/9, and 1/36 respectively

Probability is the likelihood or chance that an event will occur.

For a pair of rolled dice, the total outcome will be 6² = 36

Probability = Expected outcome/Total outcome

a) Pr(getting a sum of 1) = 0/36 = 0

Note that since we have a pair of dice, the least sum we can have is 2

b) The event for getting a sum of 5 are (1, 4), (4, 1), (3, 2), (2, 3)

n(E) = 4

Pr( getting a sum of 5) = 4/36 = 1/9

c) The event for getting a sum of 12 are (6, 6)

n(E) = 1

Pr( getting a sum of 12) = 1/36

Hence the probability of getting a sum of 1, the sum of 5, and the sum of 12 are 0, 1/9, and 1/36 respectively

Learn more here: https://brainly.com/question/13604758