Respuesta :

Answer:

The volume of the solid is 256 cubic units.

Step-by-step explanation:

Given:

The solid lies between planes [tex]x=0\ and\ x=8[/tex]

The cross section of the solid is a square with diagonal length equal to the distance between the parabolas [tex]y=-2\sqrt{x}\ and\ y=2\sqrt{x}[/tex].

The distance between the parabolas is given as:

[tex]D=2\sqrt x-(-2\sqrt x)\\\\D=2\sqrt x+2\sqrt x\\\\D=4\sqrt x[/tex]

Now, we know that, area of a square with diagonal 'D' is given as:

[tex]A=\frac{D^2}{2}[/tex]

Plug in [tex]D=4\sqrt x[/tex]. This gives,

[tex]A=\frac{(4\sqrt x)^2}{2}\\\\A=\frac{16x}{2}\\\\A=8x[/tex]

Now, volume of the solid is equal to the product of area of cross section and length [tex]dx[/tex]. So, we integrate it over the length from [tex]x=0\ to\ x=8[/tex]. This gives,

[tex]V=\int\limits^8_0 {A} \, dx\\\\V=\int\limits^8_0 {(8x)} \, dx\\\\V=8\int\limits^8_0 {(x)} \, dx\\\\V=8(\frac{x^2}{2})_{0}^{8}\\\\V=4[8^2-0]\\\\V=4\times 64\\\\V=256\ units^3[/tex]

Therefore, the volume of the solid is 256 cubic units.