How many possible 4-digit combinations are there with the numbers 2, 3, 4, 5, 6, 7, 8, and 9 if none of the numbers appear more than once (i.E. 2343, 2333, 2323, etc.)?

Respuesta :

Answer:

[tex]1680[/tex]

Step-by-step explanation:

we need a 4-digit number from the numbers [tex]2,3,4,5,6,7,8\ and\ 9[/tex] (without repetition ).

possible number at thousand place [tex]=8[/tex]

Possible numbers at hundred place[tex]=8-1=7[/tex]

Possible numbers at [tex]10^{th}[/tex] place [tex]=7-1=6[/tex]

possible number at unit place [tex]=6-1=5[/tex]

So total possible numbers

[tex]=8\times7\times6\times5\\=1680[/tex]

Other method :

We are taking [tex]4[/tex] numbers out of [tex]8[/tex] and here order matters so we will use permutation.

Total possible numbers [tex]=^8P_{4}[/tex]

[tex]\frac{8!}{(8-4)!}\\ =\frac{8!}{4!}\\ =8\times7\times6\times5\\=1680[/tex]