Complete the equation of the line through (-6,-5)(−6,−5)(, minus, 6, comma, minus, 5, )and (-4,-4)(−4,−4)(, minus, 4, comma, minus, 4, ). Use exact numbers. y=y=y, equals

Respuesta :

Answer:

[tex]y=\frac{1}{2}x-2[/tex]

Step-by-step explanation:

We have been given two points on a line [tex](-6,-5)[/tex] and [tex](-4,-4)[/tex]. We are asked to write an equation passing through these points.

We will write our equation in slope-intercept form of equation [tex]y=mx+b[/tex], where,

m = Slope of line,

b = Initial value or the y-intercept.

Let us find slope of given line using slope formula.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Let point [tex](-6,-5)=(x_1,y_1)[/tex] and point [tex](-4,-4)=(x_2,y_2)[/tex].

[tex]m=\frac{-4-(-5)}{-4-(-6)}[/tex]

[tex]m=\frac{-4+5}{-4+6}[/tex]

[tex]m=\frac{1}{2}[/tex]

Now, we will substitute [tex]m=\frac{1}{2}[/tex] and coordinates of point [tex](-6,-5)[/tex] in slope-intercept form of equation as:

[tex]-5=\frac{1}{2}*(-6)+b[/tex]

[tex]-5=-3+b[/tex]

[tex]-5+3=-3+3+b[/tex]

[tex]-2=b[/tex]

Upon substituting [tex]m=\frac{1}{2}[/tex] and [tex]b=-2[/tex] in slope-intercept form of equation, we will get our required equation as:

[tex]y=\frac{1}{2}x-2[/tex]

Therefore, our required equation would be [tex]y=\frac{1}{2}x-2[/tex].