Answer:
[tex]y=\frac{1}{2}x-2[/tex]
Step-by-step explanation:
We have been given two points on a line [tex](-6,-5)[/tex] and [tex](-4,-4)[/tex]. We are asked to write an equation passing through these points.
We will write our equation in slope-intercept form of equation [tex]y=mx+b[/tex], where,
m = Slope of line,
b = Initial value or the y-intercept.
Let us find slope of given line using slope formula.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Let point [tex](-6,-5)=(x_1,y_1)[/tex] and point [tex](-4,-4)=(x_2,y_2)[/tex].
[tex]m=\frac{-4-(-5)}{-4-(-6)}[/tex]
[tex]m=\frac{-4+5}{-4+6}[/tex]
[tex]m=\frac{1}{2}[/tex]
Now, we will substitute [tex]m=\frac{1}{2}[/tex] and coordinates of point [tex](-6,-5)[/tex] in slope-intercept form of equation as:
[tex]-5=\frac{1}{2}*(-6)+b[/tex]
[tex]-5=-3+b[/tex]
[tex]-5+3=-3+3+b[/tex]
[tex]-2=b[/tex]
Upon substituting [tex]m=\frac{1}{2}[/tex] and [tex]b=-2[/tex] in slope-intercept form of equation, we will get our required equation as:
[tex]y=\frac{1}{2}x-2[/tex]
Therefore, our required equation would be [tex]y=\frac{1}{2}x-2[/tex].