Answer:
[tex]I_2=9[/tex]
Step-by-step explanation:
We have been told that the ratios are inversely proportional in our given problem. We are asked to find the missing value.
We know that two inversely proportional quantities are in form [tex]y=\frac{k}{x}[/tex], where, y is inversely proportional to x and k is the constant of proportionality.
Let us find constant of proportionality using [tex]R_1 = 6[/tex] and [tex]I_1 = 12[/tex] in above equation.
[tex]6=\frac{k}{12}[/tex]
[tex]6*12=\frac{k}{12}*12[/tex]
[tex]72=k[/tex]
Now, we will use [tex]72=k[/tex] and [tex]R_2 = 8[/tex] in our equation to find [tex]I_2[/tex] as:
[tex]8=\frac{72}{I_2}[/tex]
[tex]I_2=\frac{72}{8}[/tex]
[tex]I_2=9[/tex]
Therefore, the value of [tex]I_2[/tex] is 9.