Respuesta :
Answer:
[tex]3.00\times10^{6}\,tons [/tex]
Explanation:
We can resolve this problem using a proportion because the ratio tons burned and energy produced is constant, using x for tons burned of coal to produce [tex] 9.00\times10^{16}J [/tex]:
[tex]\frac{x}{9.00\times10^{16}J}=\frac{1.00\,kg}{3.00\times10^{7}J} [/tex]
solving the proportion:
[tex]x*3.00\times10^{7}J=1.00\,kg*9.00\times10^{16}J [/tex]
[tex] \frac{x*\cancel{3.00\times10^{7}J}}{\cancel{3.00\times10^{7}J}}=\frac{1.00\,kg*9.00\times10^{16}J}{3.00\times10^{7}J}[/tex]
[tex]x=\frac{9.00\times10^{16}kg*\cancel{J}}{3.00\times10^{7}\cancel{J}}=3.00\times10^{9}\,kg [/tex]
Now we have the answer but in kilograms we should convert this knowing that 1 ton = 1000 kg:
[tex]3.00\times10^{9}\,kg=3.00\times10^{9}\,\cancel{kg}*\frac{1\,ton}{1000\,\cancel{kg}} [/tex]
[tex]3.00\times10^{9}\,kg=3.00\times10^{6}\,tons [/tex]
Answer:
3.3 x 106 tons
Explanation:
Since you know that E = mc2, and both equations possess the constant speed of light, set the two equations as equivalencies. For instance, E1/m1 = E2/m2. Solve for m2.
Took the test and got it correct