KitCat21
contestada

Water has a boiling point of 100.0°C and a Kb of 0.512°C/m. What is the boiling
point of a 8.5 m solution of Mg3(PO4)2 in water?​

Respuesta :

Answer:

The boiling  point of a 8.5 m solution of Mg3(PO4)2 in water is 394.91 K.

Explanation:

The formula for molal boiling Point elevation is :

[tex]\Delta T_{b} = iK_{b}m[/tex]

[tex]\Delta T_{b}[/tex] = elevation in boiling Point

[tex]K_{b}[/tex] = Boiling point constant( ebullioscopic constant)

m = molality of the solution

i = Van't Hoff Factor

Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .

In solution Mg3(PO4)2 dissociates as follow :

[tex]Mg_{3}(PO_{4})_{2}\rightarrow 3Mg^{2+} + 2 PO_{4}^{3-}[/tex]

Total ions after dissociation in solution :

= 3 ions of Mg + 2 ions of phosphate

Total ions = 5

i = Van't Hoff Factor = 5

m = 8.5 m

[tex]K_{b}[/tex] = 0.512 °C/m

Insert the values and calculate temperature change:

[tex]\Delta T_{b} = iK_{b}m[/tex]

[tex]\Delta T_{b} = 5\times 0.512\times 8.5[/tex]

[tex]\Delta T_{b} = 21.76 K[/tex]

Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

[tex]\Delta T_{b} = T_{b} - T_{b}_{pure}[/tex]

[tex]T_{b}_{pure}[/tex] = 373.15 K[/tex]

21.76 = T - 373.15

T = 373.15 + 21.76

T =394.91 K