Respuesta :

Answer:

[tex]y(x) = C_1 cos 2 x + C_2 sin 2 x + x [/tex]

Step-by-step explanation:

given,

y′′ + 4 y = 4 x

D² y + 4 y = 4 x

(D²+4) y = 4 x

now, writing Auxiliary  equation

m² + 4 = 0

m² = -4

m = ± 2 i

now, complimentary function

[tex]y_c = e^{ax}(C_1 cos b x + C_2 sin b x)[/tex]

a = 0 ,  b = 2

[tex]y_c =C_1 cos 2 x + C_2 sin 2 x[/tex]

particular integral (y_p)

y_p = a x

y'_p = a

y"_p = 0

now,

y′′+ 4 y = 4 x

0+ 4 (a x )= 4 x

4 a x = 4 x

     a = 1

now,

  y_p = x

now, general equation

[tex]y(x) = y_c + y_p[/tex]

[tex]y(x) = C_1 cos 2 x + C_2 sin 2 x + x [/tex]