Answer:
[tex]y(x) = C_1 cos 2 x + C_2 sin 2 x + x [/tex]
Step-by-step explanation:
given,
y′′ + 4 y = 4 x
D² y + 4 y = 4 x
(D²+4) y = 4 x
now, writing Auxiliary equation
m² + 4 = 0
m² = -4
m = ± 2 i
now, complimentary function
[tex]y_c = e^{ax}(C_1 cos b x + C_2 sin b x)[/tex]
a = 0 , b = 2
[tex]y_c =C_1 cos 2 x + C_2 sin 2 x[/tex]
particular integral (y_p)
y_p = a x
y'_p = a
y"_p = 0
now,
y′′+ 4 y = 4 x
0+ 4 (a x )= 4 x
4 a x = 4 x
a = 1
now,
y_p = x
now, general equation
[tex]y(x) = y_c + y_p[/tex]
[tex]y(x) = C_1 cos 2 x + C_2 sin 2 x + x [/tex]