Respuesta :
Answer:
a) (y-16)/y = -7*e∧(-0.016946*t)
b) y = 6.34
c) t = 129.66 years in 2055
Step-by-step explanation:
a) dy/dt = ky*(16-y)
Solving the differential equation we have
dy / (y*(y-16)) = -k dt
∫ dy / (y*(y-16)) = ∫ -k dt
(-1/16)*Ln (y) + (1/16)*Ln (y-16) = -k*t + C
(1/16) Ln ((y-16)/y) = -k*t + C
Ln ((y-16)/y) = -16*k*t + C
(y-16)/y = C*e∧(-16*k*t)
If t = 0 and y = 2
(2-16)/2 = C*e∧(0)
C = -7 then we have
(y-16)/y = -7*e∧(-16*k*t)
In 1975 we have t = 1975 - 1925= 50 years and y = 4
(4-16)/4 = -7*e∧(-16*k*50)
k= - Ln (3/7) / 800 = 0.001059
Finally, the differential equation will be
(y-16)/y = -7*e∧(-16*0.001059*t)
(y-16)/y = -7*e∧(-0.016946*t)
b) In 2015 we have t = 2015 – 1925 = 90 years
(y-16)/y = -7*e∧(-0.016946*90)
Solving the equation we get
y = 6.34
c) If y = 9
(9-16)/9 = -7*e∧(-0.016946*t)
t = 129.66 years in 2055
The solution for (a)[tex]a) (y-16)/y = -7*e^{(-0.016946*t)}[/tex]b) y = 6.34 and (c) the value of t is 129.66 years in 2055
We have given that,
[tex]a) dy/dt = ky*(16-y)[/tex]
By using variable separable form we have,
What is the variable separable form?
A variable separable differential equation is any differential equation in which variables can be separated
Therefore by solving the differential equation we have
[tex]dy / (y*(y-16)) = -k dt[/tex]
integrating both side with respect to t
[tex]\int dy / (y*(y-16)) = \int -k dt[/tex]
Solve the integration of the above
[tex](-1/16)*ln (y) + (1/16)*ln (y-16) = -k*t + C[/tex]
[tex](1/16) ln ((y-16)/y) = -k*t + C[/tex]
[tex]ln ((y-16)/y) = -16*k*t + C[/tex]
[tex](y-16)/y = C*e^{(-16*k*t)}[/tex]
If t = 0 and y = 2
[tex](2-16)/2 = C*e^{0}[/tex]
C = -7 then we have
[tex](y-16)/y = -7*e^{(-16*k*t)}[/tex]
In 1975 we have t = 1975 - 1925= 50 years and y = 4
[tex](4-16)/4 = -7*e^{(-16*k*50)[/tex]
[tex]k= - Ln (3/7) / 800 = 0.001059[/tex]
Finally, the differential equation will be
[tex](y-16)/y = -7*e^{(-16*0.001059*t)}[/tex]
[tex](y-16)/y = -7*e^{(-0.016946*t)}[/tex]
b) In 2015 we have t = 2015 – 1925 = 90 years
[tex](y-16)/y = -7*e^{(-0.016946*90)}[/tex]
Solving the equation we get
y = 6.34
c) If y = 9
[tex](9-16)/9 = -7*e^{(-0.016946*t)}[/tex]
Therefore we get the value of t is 129.66 years in 2055
To learn more about the differential equation visit:
https://brainly.com/question/1164377