Answer:
The cost function is [tex]C(x)=x^4-3x^2+5x+550[/tex].
Step-by-step explanation:
It is given that the marginal cost of manufacturing an item when x thousand items are produced is
[tex]\frac{dC}{dx}=4x^3-6x+5[/tex]
We need to find the cost function.
Multiply both sides by dx.
[tex]dC=(4x^3-6x+5)dx[/tex]
Integrate both sides to find the cost function.
[tex]\int dC=\int (4x^3-6x+5)dx[/tex]
[tex]\int dC=4\int x^3dx-6\int xdx+5\int 1 dx[/tex]
[tex]C(x)=4(\frac{x^4}{4})-6(\frac{x^2}{2})+5x+C[/tex]
where, C(x) is const function and C is a constant.
[tex]C(x)=x^4-3x^2+5x+C[/tex]
It is given that C(0)=550. Substitute x=0 in the above function.
[tex]C(0)=(0)^4-3(0)^2+5(0)+C[/tex]
[tex]C(0)=C[/tex]
[tex]550=C[/tex]
Therefore, the cost function is [tex]C(x)=x^4-3x^2+5x+550[/tex].