Respuesta :

Answer:

B

Step-by-step explanation:

quadratic formula:

x = [-b ± sqrt(b^2 - 4ac)] / 2a

1. find a, b, and c

a = 1

b = -3

c = 1

2. plug values into formula

x = [3 ± sqrt(9-4•1•1)] / 2

3. simplify

x = [3 ± sqrt(5)] / 2

This is B.

Answer:

Option b) is correct

ie., [tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]

Step-by-step explanation:

Given quadratic equation is [tex]x^{2}-3x+1=0[/tex]

To find the solutions of given equation:

Solution of quadratic equation [tex]ax^{2}+bx+c=0[/tex]

[tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex] where a,b, are coefficients of [tex]x^{2}[/tex] and x respectively and c is constant.

From the given quadratic equation a=1, b=-3 and c=1

[tex]x=\frac{-(-3)\pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}[/tex]

[tex]x=\frac{3\pm \sqrt{9-4}}{2}[/tex]

[tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]

Therefore Option b) is correct

ie., [tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]