Respuesta :
Answer:
B
Step-by-step explanation:
quadratic formula:
x = [-b ± sqrt(b^2 - 4ac)] / 2a
1. find a, b, and c
a = 1
b = -3
c = 1
2. plug values into formula
x = [3 ± sqrt(9-4•1•1)] / 2
3. simplify
x = [3 ± sqrt(5)] / 2
This is B.
Answer:
Option b) is correct
ie., [tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]
Step-by-step explanation:
Given quadratic equation is [tex]x^{2}-3x+1=0[/tex]
To find the solutions of given equation:
Solution of quadratic equation [tex]ax^{2}+bx+c=0[/tex]
[tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex] where a,b, are coefficients of [tex]x^{2}[/tex] and x respectively and c is constant.
From the given quadratic equation a=1, b=-3 and c=1
[tex]x=\frac{-(-3)\pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}[/tex]
[tex]x=\frac{3\pm \sqrt{9-4}}{2}[/tex]
[tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]
Therefore Option b) is correct
ie., [tex]x=\frac{3\pm \sqrt{5}}{2}[/tex]