Respuesta :

Answer:

The interior angle of 12-gon is [tex]150^{\circ}[/tex]  

The exterior angle of 12-gon is [tex]30^{\circ}[/tex]

Step-by-step explanation:

Given as :

A regular 12-gon is a dodecagonal polygon

i.e The number of sides of the polygon = n = 12

Let The exterior angle of 12-gon = x°

And Let The interior angle of 12-gon = y°

Now,

Exterior angle = [tex]\frac{360^{\circ}}{number of sides}[/tex]

So, exterior angle of 12-gon = [tex]\frac{360^{\circ}}{n}[/tex]

Or, x = [tex]\frac{360^{\circ}}{12}[/tex]

∴ x = [tex]30^{\circ}[/tex]

So,The exterior angle of 12-gon = x = [tex]30^{\circ}[/tex]

Again

Interior angle = [tex]180^{\circ}[/tex] - exterior angle

So, interior angle of 12-gon = [tex]180^{\circ}[/tex] - exterior angle

Or, y =  [tex]180^{\circ}[/tex] -  [tex]30^{\circ}[/tex]

∴ y =  [tex]150^{\circ}[/tex]

So,The interior angle of 12-gon = y = [tex]150^{\circ}[/tex]

Hence, The interior angle of 12-gon is [tex]150^{\circ}[/tex] and The exterior angle of 12-gon is [tex]30^{\circ}[/tex] . Answer