Answer:
The interior angle of 12-gon is [tex]150^{\circ}[/tex]
The exterior angle of 12-gon is [tex]30^{\circ}[/tex]
Step-by-step explanation:
Given as :
A regular 12-gon is a dodecagonal polygon
i.e The number of sides of the polygon = n = 12
Let The exterior angle of 12-gon = x°
And Let The interior angle of 12-gon = y°
Now,
∵ Exterior angle = [tex]\frac{360^{\circ}}{number of sides}[/tex]
So, exterior angle of 12-gon = [tex]\frac{360^{\circ}}{n}[/tex]
Or, x = [tex]\frac{360^{\circ}}{12}[/tex]
∴ x = [tex]30^{\circ}[/tex]
So,The exterior angle of 12-gon = x = [tex]30^{\circ}[/tex]
Again
∵ Interior angle = [tex]180^{\circ}[/tex] - exterior angle
So, interior angle of 12-gon = [tex]180^{\circ}[/tex] - exterior angle
Or, y = [tex]180^{\circ}[/tex] - [tex]30^{\circ}[/tex]
∴ y = [tex]150^{\circ}[/tex]
So,The interior angle of 12-gon = y = [tex]150^{\circ}[/tex]
Hence, The interior angle of 12-gon is [tex]150^{\circ}[/tex] and The exterior angle of 12-gon is [tex]30^{\circ}[/tex] . Answer