Simplify completely quantity 12 x plus 36 over quantity x squared minus 4 x minus 21 and find the restrictions on the variable.

a.) 12 over quantity x minus 7, x ≠ 7
b.) 12 over quantity x minus 7, x ≠ 7, x ≠ −3
c.) quantity x plus 3 over quantity x minus 7, x ≠ 7
d.)quantity x plus 3 over quantity x minus 7, x ≠ 7, x ≠ −3

Respuesta :

Option B

12 over quantity x minus 7, x ≠ 7, x ≠ −3

Solution:

Given that we have to simplify quantity 12 x plus 36 over quantity x squared minus 4 x minus 21

So we have to simplify,

[tex]\frac{12x + 36}{ {x}^{2} - 4x - 21 }[/tex]

We have to find the restrictions on the variable

The above given Rational function is defined, for

[tex]{x}^{2} - 4x - 21\ne0\\\\(x+3)(x-7)\ne0\\\\x\ne -3,x\ne7[/tex]

In order to simplify the above expression, we need to factor both the numerator and the denominator

[tex]\rightarrow \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 4x - 21}[/tex]

For the denominator, we need to split the middle term of the quadratic to get factored form,

[tex]\rightarrow \frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ {x}^{2} - 7x + 3x- 21}[/tex]

[tex]\frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ x(x - 7) + 3(x- 7)}[/tex]

Fcatoring the denominator part,

[tex]\frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12(x + 3)}{ (x + 3)(x - 7)}[/tex]

Cancel out common factors to get,

[tex]\frac{12x + 36}{ {x}^{2} - 4x - 21 } = \frac{12}{x - 7} \\\\where\\\\x\ne -3,x\ne7[/tex]

Thus option B is correct. 12 over quantity x minus 7, x ≠ 7, x ≠ −3