Respuesta :
Answer:
Option D.
Step-by-step explanation:
It is given that a set of 15 different integers has a median of 25 and a range of 25.
Total number of integers is 15 which is an odd number.
[tex](\frac{n+1}{2}) th=(\frac{15+1}{2}) th=8th[/tex]
8th integers is median. It means 8th integers is 25.
7 different integers before 25 are 18, 19, 20, 21, 22, 23, 24.
It means the greatest possible minimum value is 18.
Range = Maximum - Minimum
25 = Maximum - 18
Add 18 on both sides.
25 +18 = Maximum
43 = Maximum
The greatest possible integer in the set is 43.
Therefore, the correct option is D.
Answer:
D. 43
Step-by-step explanation:
We have been given that a set of 15 different integers has a median of 25 and a range of 25.
Since each data point is different, so we can represent our data points as:
[tex]N_1,N_2,N_3,N_4,N_5,N_6,N_7,N_8, N_9,N_{10},N_{11},N_{12},N_{13},N_{14}, N_{15}[/tex]
Since there are 15 data points, this means that median will be 8th data point.
We have been given that median is 25, so [tex]n_8=25[/tex].
Since each data point is different, so 7 data points less than 25 would be:
18, 19, 20, 21, 22, 23, 24.
We know that range is the difference between upper value and lower value.
[tex]\text{Range}=\text{Upper value}-\text{Lower value}[/tex]
[tex]\text{Range}+\text{Lower value}=\text{Upper value}[/tex]
Upon substituting our given values, we will get:
[tex]25+18=\text{Upper value}[/tex]
[tex]43=\text{Upper value}[/tex]
Therefore, the greatest possible integer in this set could be 43 and option D is the correct choice.