Respuesta :
Answer:
No; Because g'(0) ≠ g'(1), i.e. 0≠2, then this function is not differentiable for g:[0,1]→R
Step-by-step explanation:
Assuming: the function is [tex]f(x)=x^{2}[/tex] in [0,1]
And rewriting it for the sake of clarity:
Does there exist a differentiable function g : [0, 1] →R such that g'(x) = f(x) for all g(x)=x² ∈ [0, 1]? Justify your answer
1) A function is considered to be differentiable if, and only if both derivatives (right and left ones) do exist and have the same value. In this case, for the Domain [0,1]:
[tex]g'(0)=g'(1)[/tex]
2) Examining it, the Domain for this set is smaller than the Real Set, since it is [0,1]
The limit to the left
[tex]g(x)=x^{2}\\g'(x)=2x\\ g'(0)=2(0) \Rightarrow g'(0)=0[/tex]
[tex]g(x)=x^{2}\\g'(x)=2x\\ g'(1)=2(1) \Rightarrow g'(1)=2[/tex]
g'(x)=f(x) then g'(0)=f(0) and g'(1)=f(1)
3) Since g'(0) ≠ g'(1), i.e. 0≠2, then this function is not differentiable for g:[0,1]→R
Because this is the same as to calculate the limit from the left and right side, of g(x).
[tex]f'(c)=\lim_{x\rightarrow c}\left [\frac{f(b)-f(a)}{b-a} \right ]\\\\g'(0)=\lim_{x\rightarrow 0}\left [\frac{g(b)-g(a)}{b-a} \right ]\\\\g'(1)=\lim_{x\rightarrow 1}\left [\frac{g(b)-g(a)}{b-a} \right ][/tex]
This is what the Bilateral Theorem says:
[tex]\lim_{x\rightarrow c^{-}}f(x)=L\Leftrightarrow \lim_{x\rightarrow c^{+}}f(x)=L\:and\:\lim_{x\rightarrow c^{-}}f(x)=L[/tex]