Answer:
n = 1
Step-by-step explanation:
First, rearrange the equation to standard form 0 = ax² + bx + c, when everything equals 0.
5n² = 5
5n² - 5 = 0
State the variables a, b and c.
a = 5; b = 0; c = -5
Substitute a, b, and c into the quadratic formula.
[tex]n = \frac{-b ±\sqrt{b^{2}-4ac} }{2a}[/tex]
[tex]n = \frac{-0 ±\sqrt{0^{2}-4(5)(-5)} }{2(5)}[/tex] Substitute
[tex]n = \frac{\sqrt{100} }{10}[/tex] Simplify inside the √ and bottom
[tex]n = \frac{10}{10}[/tex] Simplify the top
[tex]n = 1[/tex] Final answer
Therefore the solution is n = 1.
The quadratic formula usually is written with x, but it can be solved with any variable in standard form.