Answer:
[tex]1.73553\times 10^{-10}\ m[/tex]
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
K = Potential difference = 50 V
m = Mass of electron = [tex]9.11\times 10^{-31}\ kg[/tex]
The de broglie wavelength is given by
[tex]\lambda=\dfrac{h}{\sqrt{2mK}}\\\Rightarrow \lambda=\dfrac{6.626\times 10^{-34}}{\sqrt{2\times 9.11\times 10^{-31}\times 50\times 1.6\times 10^{-19}}}\\\Rightarrow \lambda=1.73553\times 10^{-10}\ m[/tex]
The wavelength is [tex]1.73553\times 10^{-10}\ m[/tex]