find an equation of the line satisfying the given conditions. write the equation using function notation. Through (-20,5) and (-36, 9) And can you show me the steps?

Respuesta :

Answer:

The equation of the line using function notation is

[tex]y=f(x)=-\frac{1}{4}x[/tex]

Step-by-step explanation:

Given points are (-20,5) and (-36, 9)

Now to find the equation of the line passes through these points

Let [tex](x_{1},y_{1})[/tex] and  [tex](x_{2},y_{2})[/tex] be the two given points  (-20,5) and (-36, 9) respectively.

To find slope

[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

[tex]m=\frac{9-5}{-36-(-20)}[/tex]

[tex]m=\frac{4}{-36+20}[/tex]

[tex]m=\frac{4}{-16}[/tex]

[tex]m=-\frac{1}{4}[/tex]

Therefore  [tex]m=-\frac{1}{4}[/tex]

The equation of the line is of thr form y=mx+c

The point (-20,5) passes through the above line and  [tex]m=-\frac{1}{4}[/tex]

[tex]5=-\frac{1}{4}(-20)+c[/tex]

[tex]5=5+c[/tex]

[tex]c=0[/tex]

[tex]y=-\frac{1}{4}x+0[/tex]

Therefore  [tex]y=-\frac{1}{4}x[/tex]

Therefore the equation of the line using function notation is

[tex]y=f(x)=-\frac{1}{4}x[/tex]