Respuesta :

Answer:

11 sections

Step-by-step explanation:

This problem is called the circle cutting or pancake cutting problem.

Let the number of cuts or divisions by straight line = n

With this information it is possible to calculate any number of pieces or section a circle will be divided into what straight lines are drawn (cut) across the circle.

When a straight line is drawn across the circle, it divides the circle into 2 sections or regions. The nth straight lines will divide the circle into n new sections or regions, so the progression is;

         f(1) = 2

         f(2) = 2 + f(1)

         f(3) = 3 + f(2)

         .

         .

         .

         f(n) = n + f(n-1)

Therefore,

         f(n) = n + [(n-1) + f(n-2)}

               = n + n-1 + ... + 2 + f(1)

               = f(1) + ∑[tex]_{i = 2}^{n}[/tex]i

               = [tex]2 + \frac{1}{2} (n + 2) (n - 1)[/tex]

               = [tex]\frac{1}{2}(n^{2} + n + 2)[/tex]

When n = 4

              =  [tex]\frac{1}{2}(4^{2} + 4 + 2)[/tex]

              = 22/2

              = 11 sections