A company manufactures and sells x television sets per month. The monthly cost and​ price-demand equations are ​C(x)=72,000+60x and p(x)=300−(x/20​),


0l≤x≤6000.


​(A) Find the maximum revenue.

(B) Find the maximum​ profit, the production level that will realize the maximum​ profit, and the price the company should charge for each television set.

​(C) If the government decides to tax the company ​$55 for each set it​ produces, how many sets should the company manufacture each month to maximize its​ profit? What is the maximum​ profit? What should the company charge for each​ set?

Respuesta :

Answer:

Step-by-step explanation:

Given

Cost Price [tex]c(x)=72000+60x[/tex]

Price [tex]p(x)=300-\frac{x}{20}[/tex]

Revenue generated [tex]R(x)=P(x)\times x[/tex]

where x=no of units

[tex]R(x)=300x-\frac{x^2}{20}[/tex]

To get maxima and minima differentiate R(x)

[tex]\frac{\mathrm{d} R(x)}{\mathrm{d} x}=0[/tex]

[tex]\frac{\mathrm{d} R(x)}{\mathrm{d} x}=300-2\times \frac{x}{20}=0[/tex]

[tex]300=2\times \frac{x}{20}[/tex]

[tex]x=3000[/tex]

maximum Revenue [tex]R(x)=(300-\frac{300}{20})\times 300=4,50,000 [/tex]

(b)Profit=Revenue - cost

[tex]Profit=xp(x)-c(x)[/tex]

[tex]Profit=300x-\frac{x^2}{20}-72000-60x[/tex]

[tex]Profit(z)=240x-\frac{x^2}{20}-72000[/tex]

differentiate Profit to get maximum value

[tex]\frac{\mathrm{d} z}{\mathrm{d} x}=240-2\times \frac{x}{20}[/tex]

[tex]x=2400[/tex]

maximum Profit [tex]z=2,16,000[/tex]

(c)Now company decided to tax the company $ 55 for each set

Profit [tex](z_1)=xp(x)-c(x)-55x[/tex]

[tex]z_1=300x-\frac{x^2}{20}-72000x-60x^2-55x[/tex]

[tex]z_1=185x-\frac{x^2}{20}-72,000[/tex]

differentiate Profit to get maximum value

[tex]\frac{\mathrm{d} z_1}{\mathrm{d} x}=0[/tex]

[tex]\frac{\mathrm{d} z_1}{\mathrm{d} x}=185-\frac{2x}{20}=0[/tex]

[tex]x=1850[/tex]

[tex]P(z_1\ at\ x=1850)=99125[/tex]

company should charge 207.5 $ for each set

         

Following are the responses to the given question:

For point a:

[tex]\to p(x)=300-(\frac{x}{20})\\\\\to revenue \ R(x)=p\times x\\\\\to revenue\ R(x)=300x -(\frac{x^2}{20})\\\\[/tex]

for maximum revenue [tex]\frac{dR}{dx} =0 ,[/tex]

[tex]\to 300-(\frac{2x}{20})=0\\\\\to \frac{x}{10}=300\\\\\to x=3000\\\\[/tex]

maximum revenue:

[tex]\to R(3000)=300\times 3000 -(\frac{3000^2}{20})\\\\[/tex]

[tex]\to R(3000)=\$450000[/tex]

For point b:

[tex]\to \text{profit =revenue -cost}[/tex]

[tex]\to P(x)=300x -(\frac{x^2}{20})-72000-60x\\\\\to P(x)=240x -(\frac{x^2}{20})-72000\\\\[/tex]

for maximum cost[tex]\frac{dP}{dx} =0[/tex]

[tex]\to 240 -(\frac{2x}{20})=0\\\\\to x=240\times 10\\\\\to x=2400\\\\\to p(2400)=300−(\frac{2400}{20})=180\\\\\to P(2400)=240\times 2400 -(\frac{2400^2}{20})-72000 \\\\\to P(2400)=216000[/tex]

Maximum profit = [tex]\$216000[/tex] when [tex]\bold{2400 \ sets}[/tex] were manufacture and solded for [tex]\bold{\$180}[/tex] each.

For point c:

[tex]\to \text{profit =revenue -cost -tax}\\\\\to P(x)=300x -(\frac{x^2}{20})-72000-60x-55x\\\\\to P(x)=185x -(\frac{x^2}{20})-72000\\\\[/tex]

for maximum cost [tex]\frac{dP}{dx} =0[/tex]

[tex]\to 185-(\frac{x^2}{20})=0\\\\\to x=185\times 10\\\\\to x=1850\\\\\to p(1850)=300−(\frac{1850}{20})=207.5\\\\\to P(1850)=185\times 1850 -(\frac{1850}{20})-72000\\\\\to P(1850)=\$99125\\\\[/tex]

In each taxed set at [tex]\bold{\$55}[/tex] so, the maximum profit = [tex]\bold{\$99125}[/tex]. If 1850 sets are manufacture and sold as each [tex]\bold{\$207.5}[/tex].

Learn more:

brainly.com/question/17447604