Respuesta :
Answer:
Step-by-step explanation:
Given
Cost Price [tex]c(x)=72000+60x[/tex]
Price [tex]p(x)=300-\frac{x}{20}[/tex]
Revenue generated [tex]R(x)=P(x)\times x[/tex]
where x=no of units
[tex]R(x)=300x-\frac{x^2}{20}[/tex]
To get maxima and minima differentiate R(x)
[tex]\frac{\mathrm{d} R(x)}{\mathrm{d} x}=0[/tex]
[tex]\frac{\mathrm{d} R(x)}{\mathrm{d} x}=300-2\times \frac{x}{20}=0[/tex]
[tex]300=2\times \frac{x}{20}[/tex]
[tex]x=3000[/tex]
maximum Revenue [tex]R(x)=(300-\frac{300}{20})\times 300=4,50,000 [/tex]
(b)Profit=Revenue - cost
[tex]Profit=xp(x)-c(x)[/tex]
[tex]Profit=300x-\frac{x^2}{20}-72000-60x[/tex]
[tex]Profit(z)=240x-\frac{x^2}{20}-72000[/tex]
differentiate Profit to get maximum value
[tex]\frac{\mathrm{d} z}{\mathrm{d} x}=240-2\times \frac{x}{20}[/tex]
[tex]x=2400[/tex]
maximum Profit [tex]z=2,16,000[/tex]
(c)Now company decided to tax the company $ 55 for each set
Profit [tex](z_1)=xp(x)-c(x)-55x[/tex]
[tex]z_1=300x-\frac{x^2}{20}-72000x-60x^2-55x[/tex]
[tex]z_1=185x-\frac{x^2}{20}-72,000[/tex]
differentiate Profit to get maximum value
[tex]\frac{\mathrm{d} z_1}{\mathrm{d} x}=0[/tex]
[tex]\frac{\mathrm{d} z_1}{\mathrm{d} x}=185-\frac{2x}{20}=0[/tex]
[tex]x=1850[/tex]
[tex]P(z_1\ at\ x=1850)=99125[/tex]
company should charge 207.5 $ for each set
Following are the responses to the given question:
For point a:
[tex]\to p(x)=300-(\frac{x}{20})\\\\\to revenue \ R(x)=p\times x\\\\\to revenue\ R(x)=300x -(\frac{x^2}{20})\\\\[/tex]
for maximum revenue [tex]\frac{dR}{dx} =0 ,[/tex]
[tex]\to 300-(\frac{2x}{20})=0\\\\\to \frac{x}{10}=300\\\\\to x=3000\\\\[/tex]
maximum revenue:
[tex]\to R(3000)=300\times 3000 -(\frac{3000^2}{20})\\\\[/tex]
[tex]\to R(3000)=\$450000[/tex]
For point b:
[tex]\to \text{profit =revenue -cost}[/tex]
[tex]\to P(x)=300x -(\frac{x^2}{20})-72000-60x\\\\\to P(x)=240x -(\frac{x^2}{20})-72000\\\\[/tex]
for maximum cost[tex]\frac{dP}{dx} =0[/tex]
[tex]\to 240 -(\frac{2x}{20})=0\\\\\to x=240\times 10\\\\\to x=2400\\\\\to p(2400)=300−(\frac{2400}{20})=180\\\\\to P(2400)=240\times 2400 -(\frac{2400^2}{20})-72000 \\\\\to P(2400)=216000[/tex]
Maximum profit = [tex]\$216000[/tex] when [tex]\bold{2400 \ sets}[/tex] were manufacture and solded for [tex]\bold{\$180}[/tex] each.
For point c:
[tex]\to \text{profit =revenue -cost -tax}\\\\\to P(x)=300x -(\frac{x^2}{20})-72000-60x-55x\\\\\to P(x)=185x -(\frac{x^2}{20})-72000\\\\[/tex]
for maximum cost [tex]\frac{dP}{dx} =0[/tex]
[tex]\to 185-(\frac{x^2}{20})=0\\\\\to x=185\times 10\\\\\to x=1850\\\\\to p(1850)=300−(\frac{1850}{20})=207.5\\\\\to P(1850)=185\times 1850 -(\frac{1850}{20})-72000\\\\\to P(1850)=\$99125\\\\[/tex]
In each taxed set at [tex]\bold{\$55}[/tex] so, the maximum profit = [tex]\bold{\$99125}[/tex]. If 1850 sets are manufacture and sold as each [tex]\bold{\$207.5}[/tex].
Learn more:
brainly.com/question/17447604