A heat engine receives 6 kW from a 250oC source and rejects heat at 30oC. Examine each of three cases with respect to the inequality of Clausius. Which process is possible. What is the maximum power available?


a) Pout = 3 kW (power out)

b) Pout = 2 kW

c) Carnot Cycle.

Respuesta :

Answer:

Explanation:

Given

[tex]T_h=250^{\circ}C\approx 523\ K[/tex]

[tex]T_L=30^{\circ}C\approx 303\ K[/tex]

[tex]Q_1=6 kW[/tex]

From Clausius inequality

[tex]\oint \frac{dQ}{T}=0[/tex]  =Reversible cycle

[tex]\oint \frac{dQ}{T}<0[/tex]  =Irreversible cycle

[tex]\oint \frac{dQ}{T}>0[/tex]  =Impossible

(a)For [tex]P_{out}=3 kW[/tex]

Rejected heat [tex]Q_2=6-3=3\ kW[/tex]

[tex]\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}[/tex]

[tex]=\frac{6}{523}-\frac{3}{303}=1.57\times 10^{-3} kW/K[/tex]

thus it is Impossible cycle

(b)[tex]P_{out}=2 kW[/tex]

[tex]Q_2=6-2=4 kW[/tex]

[tex]\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}[/tex]

[tex]=\frac{6}{523}-\frac{4}{303}=-1.73\times 10^{-3} kW/K[/tex]

Possible

(c)Carnot cycle

[tex]\frac{Q_2}{Q_1}=\frac{T_1}{T_2}[/tex]

[tex]Q_2=3.47\ kW[/tex]

[tex]\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}[/tex]

[tex]=\frac{6}{523}-\frac{3.47}{303}=0[/tex]

and maximum Work is obtained for reversible cycle when operate between same temperature limits

[tex]P_{out}=Q_1-Q_2=6-3.47=2.53\ kW[/tex]

Thus it is possible