Respuesta :
Answer:
There is 26.58 grams of gold formed
Explanation:
Step 1: Data given
17.6 A of current are passed through a gold solution for 37.0 min
Molar mass of Au = 196.967 g/mol
Step 2: The equation
Au^3+ + 3e- → Au
Step 3: Calculate coulombs
17.6 Coulomb/s * 37.0 min * 60 sec/min = 39072 Coulombs
1 Faraday = 96500 Coulombs
Step 4: Calculate faraday
39072 Coulombs / 96500 Coulombs / Faraday = 0.40489 Faraday
Step 5: Calculate mass of gold formed
For every 3 Faraday of electricity used up , 1 mole Au is formed
0.40489 Faraday * 1 mole Au/ 3 Faraday = 0.13496 mole Au
196.967 g/mol * 0.13496 mol = 26.58 g Au
There is 26.58 grams of gold formed
The mass of gold that is produced is 26.59 g
Using the formula
[tex]m = \frac{Atomic\ mass}{nF}\times It[/tex]
Where m is the mass
n is the number of equivalents
F is the Faraday constant ( F = 96485 C)
I is the current
and t is the time
From the given information
I = 17.6 A
t = 37.0 min = 37.0 × 60
t = 2220 secs
For gold
Atomic mass = 196.97 g/mol
and n = 3
Putting these parameters into the formula, we get
[tex]m = \frac{196.97}{3 \times 96485} \times 17.6 \times 2220[/tex]
[tex]m = \frac{7696011.84}{289455}[/tex]
m = 26.59 g
Hence, the mass of gold that is produced is 26.59 g
Learn more here: https://brainly.com/question/9693379