Respuesta :

Answer with Step-by-step explanation:

We are given that

RS and TV bisect each other at point X.

[tex]VX=XT[/tex]

[tex]SX=XR[/tex]

We have to prove that TR is parallel to SV.

In triangle TXR and VXS

[tex]VX=XT[/tex]

Reason: Given

[tex]SX=XR[/tex]

Reason: Given

[tex]\angle TXR=\angle VXS[/tex]

Reason: Vertical opposite angles

[tex]\triangle TXR\cong \triangle VXS[/tex]

Reason:SAS Postulate

[tex]\angle TRX=\angle VSX[/tex]

Reason: CPCT

[tex]TR\parallel SV[/tex]

Reason: Converse of alternate interior angles theorem

Hence, proved.

Ver imagen lublana