a) The custodian needs to apply 200 N of force
b) The custodian needs to apply 115.4 N of force
Explanation:
a)
We can solve this problem by applying Newton's second law: in fact, the net force along the horizontal direction must be equal to the product between the mass of the desk and the horizontal acceleration. Mathematically,
[tex]F_x = ma_x[/tex]
where
[tex]F_x = F cos \theta[/tex] is the net force on the horizontal direction, with F being the magnitude of the force applied by the custodian, and
[tex]\theta=60^{\circ}[/tex] the angle at which the force is applied
m is the mass of the desk
[tex]a_x[/tex] is the horizontal acceleration
In this problem we have:
m = 100 kg
[tex]a_x = 1.0 m/s^2[/tex]
Solving for F, we find the force that the custodian must apply:
[tex]F=\frac{ma_x}{cos \theta}=\frac{(100)(1.0)}{cos 60^{\circ}}=200 N[/tex]
b)
In this case, the rope has an angle of [tex]30^{\circ}[/tex] with the horizontal: this means that the force is applied at an angle of
[tex]\theta=30^{\circ}[/tex]
with the horizontal.
As before, we can apply Newton's second law:
[tex]F_x = ma_x[/tex]
And we have again
m = 100 kg (mass of the desk)
[tex]a_x=1.0 m/s^2[/tex] (horizontal acceleration)
This can be rewritten as
[tex]Fcos \theta = ma_x[/tex]
And solving for F, we find
[tex]F=\frac{ma_x}{cos \theta}=\frac{(100)(1.0)}{cos 30^{\circ}}=115.4 N[/tex]
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly