[tex]T = \frac{-9}{2}x + 103[/tex] is the linear equation to find the temperature T at an elevation x on the mountain, where x is in thousands of feet.
Solution:
The linear equation in slope intercept form is given as:
T = cx + k ------ (i)
Where "t" is the temperature at an elevation x
And x is in thousands of feet
Given that its 76 degrees fahrenheit at the 6000-foot level of a mountain
Given, when c = 6 thousand ft and [tex]T = 76^{\circ}[/tex] fahrenheit
This implies,
From (i)
76 = c(6) + k
76 = 6c + k
⇒ k = 76 - 6c ----- (ii)
Given that 49 degrees Fahrenheit at the 12000-foot level of the mountain
Given, when c = 12 thousand ft and [tex]T = 49^{\circ}[/tex] fahrenheit
This implies,
From (i)
49 = c(12) + k
49 = 12c + k
Substitute (ii) in above equation
49 = 12c + (76 - 6c)
49 = 12c + 76 - 6c
49 - 76 = 6c
6c = -27
[tex]c = \frac{-9}{2}[/tex]
Substituting the value of c in (ii) we get
[tex]k = 76 - 6( \frac{-9}{2})\\\\k = 76 + 27 = 103[/tex]
Substituting the value of c and k in (i)
[tex]T = \frac{-9}{2}x + 103[/tex]
Where "x" is in thousands of feet
Thus the required linear equation is found