Respuesta :
Answer:
[tex]\chi^2 = \frac{(141-141)^2}{141}+\frac{(291-282)^2}{282}+\frac{(132-141)^2}{141}=0.862[/tex]
[tex]p_v = P(\chi^2_{2} >0.861)=0.6502[/tex]
And we can find the p value using the following excel code:
"=1-CHISQ.DIST(0.861,2,TRUE)"
Since the p value is higher than the significance level [tex]0.6502>0.05[/tex] we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences for the proportions assumed.
Step-by-step explanation:
Previous concepts
A chi-square goodness of fit test "determines if a sample data matches a population".
A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".
Solution to the problem
Assume the following dataset:
White = 141, Pink = 291, Red= 132
We need to conduct a chi square test in order to check the following hypothesis:
H0: There is no difference with the proportions assumed [tex]p_{white}=1/4, p_{pink}=1/2, p_{red}=1/4[/tex]
H1: There is difference with the proportions assumed [tex]p_{white}=1/4, p_{pink}=1/2, p_{red}=1/4[/tex]
The level of significance assumed for this case is [tex]\alpha=0.05[/tex]
The statistic to check the hypothesis is given by:
[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]
The table given represent the observed values, we just need to calculate the expected values with the following formula [tex]E_i = p_i *Total[/tex]
And the calculations are given by:
[tex]E_{White} =\fra{1}{4} * 564=141[/tex]
[tex]E_{Pink} =\frac{1}{2} *564=282[/tex]
[tex]E_{Red} =\frac{1}{4}*564=141[/tex]
And now we can calculate the statistic:
[tex]\chi^2 = \frac{(141-141)^2}{141}+\frac{(291-282)^2}{282}+\frac{(132-141)^2}{141}=0.862[/tex]
Now we can calculate the degrees of freedom for the statistic given by:
[tex]df=categories-1=3-1=2[/tex]
And we can calculate the p value given by:
[tex]p_v = P(\chi^2_{2} >0.861)=0.6502[/tex]
And we can find the p value using the following excel code:
"=1-CHISQ.DIST(0.861,2,TRUE)"
Since the p value is higher than the significance level [tex]0.6502>0.05[/tex] we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences for the proportions assumed.