The position of a particle moving along a straight line at any time t is given by s(t)=t^3+9t^2-27.
Find the velocity of the particle at the time when the acceleration is zero.

Respuesta :

Answer:

v= - 27 m/s

Explanation:

Given that

s= t³-  9 t²-27       ( Correct from sources)

As we know that velocity given as

[tex]v=\dfrac{ds}{dt}[/tex]

v=3 t ² - 18 t               ------------1

As we know that acceleration given as

[tex]a=\dfrac{dv}{dt}[/tex]

[tex]v=\dfrac{d^2s}{dt^2}[/tex]

v=3 t ² - 18 t

a=6 t  -18

Given that acceleration is zero (a= 0 )

0 = 6 t  - 18

t=  3 sec

Now by putting the values in the equation 1

v=3 t ² - 18 t  m/s  

v=3 x 3 ² - 18 x 3 m/s

v= 27 - 54  m/s

v= - 27 m/s

   

The velocity of the particle will be "-27 m/s".

Given:

  • [tex]s(t)=t^3+9t^2-27[/tex]

As we know,

The velocity:

→ [tex]v = \frac{ds}{dt}[/tex]

  [tex]v = 3t^2 -18 t[/tex] ...(eqn 1)

and,

The acceleration:

→ [tex]a = \frac{dv}{dt}[/tex]

  [tex]a = 6t -18[/tex]

When, a = 0

→ [tex]0 = 6t -18[/tex]

 [tex]6t = 18[/tex]

   [tex]t = \frac{18}{6}[/tex]

      [tex]= 3 \ sec[/tex]

By putting the values in "eqn 1", we get

→ [tex]v = 3t^2-18t[/tex]

     [tex]= 3\times 3^2-18\times 3[/tex]

     [tex]= 27-54[/tex]

     [tex]= -27 \ m/s[/tex]

Thus the above approach is appropriate.  

Learn more about acceleration here:

https://brainly.com/question/8444955