Respuesta :
Answer:
v= - 27 m/s
Explanation:
Given that
s= t³- 9 t²-27 ( Correct from sources)
As we know that velocity given as
[tex]v=\dfrac{ds}{dt}[/tex]
v=3 t ² - 18 t ------------1
As we know that acceleration given as
[tex]a=\dfrac{dv}{dt}[/tex]
[tex]v=\dfrac{d^2s}{dt^2}[/tex]
v=3 t ² - 18 t
a=6 t -18
Given that acceleration is zero (a= 0 )
0 = 6 t - 18
t= 3 sec
Now by putting the values in the equation 1
v=3 t ² - 18 t m/s
v=3 x 3 ² - 18 x 3 m/s
v= 27 - 54 m/s
v= - 27 m/s
The velocity of the particle will be "-27 m/s".
Given:
- [tex]s(t)=t^3+9t^2-27[/tex]
As we know,
The velocity:
→ [tex]v = \frac{ds}{dt}[/tex]
[tex]v = 3t^2 -18 t[/tex] ...(eqn 1)
and,
The acceleration:
→ [tex]a = \frac{dv}{dt}[/tex]
[tex]a = 6t -18[/tex]
When, a = 0
→ [tex]0 = 6t -18[/tex]
[tex]6t = 18[/tex]
[tex]t = \frac{18}{6}[/tex]
[tex]= 3 \ sec[/tex]
By putting the values in "eqn 1", we get
→ [tex]v = 3t^2-18t[/tex]
[tex]= 3\times 3^2-18\times 3[/tex]
[tex]= 27-54[/tex]
[tex]= -27 \ m/s[/tex]
Thus the above approach is appropriate.
Learn more about acceleration here:
https://brainly.com/question/8444955