To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
[tex]1Ly =9.4605284*10^{15}m \rightarrow 'Ly'[/tex]means Light Year
Then
[tex]14.4Ly = 1.36231609*10^{17} m[/tex]
If we have that
[tex]v= \frac{x}{t} \rightarrow t = \frac{x}{t}[/tex]
Where,
v = Velocity
x = Displacement
t = Time
We have that
[tex]t = \frac{1.36231609*10^{17}}{0.96c} \rightarrow c[/tex]= Speed of light
[tex]t = \frac{1.36231609*10^{17}}{0.96(3*10^8)}[/tex]
[tex]t= 454105363 s (\frac{1hour}{3600s})[/tex]
[tex]t= 126140 hours(\frac{1day}{24hours})[/tex]
[tex]t= 5255.85 days(\frac{1 year}{365days})[/tex]
[tex]t = 14.399 years[/tex]
Therefore will take 14.399 years