Answer:
[tex]\oint_cF.dr=0\\[/tex]
Step-by-step explanation:
Given that a circle C of radius 7
[tex]x^{2} +y^{2} =49---(1)[/tex]
To find:
[tex]\oint_{C}F.dr[/tex]
As NO function is given so we suppose it to be:
[tex]F=<x,y>[/tex]
Parametric equations:
[tex]x=rcos\theta=7cos\theta\\y=rsin\theta=7sin\theta[/tex]
Each point on circle can be then found as
[tex]r(\theta)=<7cos\theta,7sin\theta>---(2)[/tex]
From (2) dr can be found as:
[tex]dr=<-7sin(\theta),7cos(\theta)>d\theta---(3)[/tex]
From (2) and (3)
[tex]\oint_cF.dr=\int_{0}^{2\pi}{<7cos\theta,7sin\theta><-7sin(\theta),7cos(\theta)>}\,d\theta\\\\\oint_cF.dr=\int_{0}^{2\pi}{<(-7cos\theta)(7sin\theta),(7sin(\theta))(7cos(\theta))>}\,d\theta\\\\\\\oint_cF.dr=\int_{0}^{2\pi}{-49cos\theta sin\theta+49sin(\theta)cos(\theta)}\,d\theta\\\\\oint_cF.dr=0\\[/tex]