Respuesta :
The final answer for the solution is Q= -8.8171*[tex]10^{-4}[/tex] kW
Explanation:
[tex]CO +H_2O ⇄ CO_2+H_2[/tex]
basic:
100 moles of product gas
[tex]CO_2[/tex] = 40 moles
[tex]H_2[/tex] = 40 moles
[tex]H_20[/tex] = 20 moles
for 40 moles of[tex]CO_2[/tex] we need 40 moles of CO and 40 moles of [tex]H_2O[/tex]
therefore,
Inlet :
No of moles of CO = 40
No of moles of [tex]H_20[/tex] = 40
but [tex]H_20[/tex] is in the outlet stream = 20 modes
Excess = [tex]\frac{20}{40}\ \times 100[/tex]%
= 50%
50% excess stream is fed to the reactor
a) Rate of conversion:
ρ_water (density ) =[tex]\frac{1g}{cm^{3}}[/tex]
Given volume rate = 3.5 [tex]\frac{cm^{3} }{hr}[/tex]
3.5 * density = 3.5 * [tex]10^{-3}[/tex] [tex]\frac{kg}{hr}[/tex]
b) Rate (kW)
ΔH = ΔH_1 + ΔH_2 +ΔH_3
Rate of condensation Q° =n° ΔH
Q = n° (ΔH_1 + ΔH_2 +ΔH_3)
ΔH_1 is sensible heat
V =[tex]\int\limits^T_S {C_p(T) } \, dT[/tex]
C_p(T) = a + bT + CT^2 +dT^3
H_2O
a=32.218
b=o.192 * 10^-2
c= 1.055 * 10^-5
d= -3.593 * 10^-9
ΔH_2 = ∫(a+bT +a^2 +dT^3)dT (of limits 100 to 500 )
= -13497.6
ΔH_3 =∫(a +bT +T^2 +dT^3)dT (of limit 95 to 100)
= -2751.331
phase change
ΔH_2 = - ΔH_v
ΔH_v = 7.3 @ 100° C
liquid → vapor ⇒ ΔH_v
vapor → liquid ⇒ -ΔH_v
Q= n°(-16324.231)
=350 *[tex]10^{-5}[/tex] (-16324.231)
=[tex]\frac{350* 10^{-5} }{18}[/tex] (-16324.231) *[tex]\frac{kg}{hr}[/tex][tex]\frac{J}{mol}[/tex]
=[tex]\frac{350* 10^{-5} }{18}[/tex] (-16324.231) * \frac{J}{mol}[/tex]
=[tex]\frac{350* 10^{-5} }{18}[/tex] (-16324.231) *kW
Q= -8.8171*[tex]10^{-4}[/tex] kW