Answer:
22.79 years(Approx).
Explanation:
We use the formula:
[tex]A=P(1+\frac{r}{100})^{n}[/tex]
where
A=future value
P=present value
r=rate of interest
n=time period.
[tex]60,000=10,000(1.09)^{n}[/tex]
[tex]\frac{60,000}{10,000}=(1.09)^{n}[/tex]
[tex]6=(1.09)^{n}[/tex]
Taking log on both sides
log 6 = (n × log 1.09)
n = log 6 ÷ log 1.09
= 20.79 years
Hence,
The time to wait from now:
= 20.79 years + 2 years
= 22.79 years(Approx).