A body of mass 400 kg is suspended at a lower end of a light vertical chain and is being pulled up vertically. Initially the body is at rest and the pull on the chain is 6000 g (g is 9.8 m/s^2) The pull gets smaller uniformly at the rate of 360g N per each meter through which the body is raised. What is the velocity of the body when it has been raised 10m?

Respuesta :

Answer:31.62 m/s

Explanation:

Given

mass of body [tex]m=400 kg[/tex]

Pull on chain is [tex]F_1=6000g N=60 kN[/tex]

Pull get smaller at the rate of [tex]F_2=360g N/m[/tex]

Net Upward Force [tex]F=6000 g-360 g\times 10=24 kN[/tex]

net acceleration [tex]a=\frac{F}{m}[/tex]

[tex]a=\frac{24\times 1000}{m}[/tex]

[tex]a=\frac{24000}{400}[/tex]

[tex]a=60 m/s^2[/tex]

but g is acting downward

[tex]a_{net}=a-g=60-10=50 m/s^2[/tex]

using [tex]v^2-u^2=2 as[/tex]

here initial velocity is zero

[tex]v^2=2\times 50\times 10[/tex]

[tex]v=31.62 m/s[/tex]

The velocity of the body will be "31.62 m/s".

Given:

Mass of body,

  • m = 400 kg

Pull on chain,

  • [tex]F_1= 6000 \ g.N[/tex]
  • [tex]F_2 = 360 \ g.N/m[/tex]

The net upward force will be:

→ [tex]F = 6000-360\times 10[/tex]

      [tex]= 6000-3600[/tex]

      [tex]= 2400[/tex]

or,

      [tex]= 24 \ kN[/tex]

Now,

The net acceleration will be:

→ [tex]a = \frac{F}{m}[/tex]

     [tex]= \frac{24\times 1000}{400}[/tex]

     [tex]= 60 \ m/s^2[/tex]

But,

"g" is acting downwards then,

→ [tex]a_{net} = a -g[/tex]

          [tex]= 60-10[/tex]

          [tex]= 50 \ m/s^2[/tex]

By using,

→ [tex]v^2-u^2=2as[/tex]

          [tex]v^2= 2\times 50\times 10[/tex]

               [tex]= 1000[/tex]

            [tex]v = \sqrt{1000}[/tex]

               [tex]= 31.62 \ m/s[/tex]

Thus the above answer is right.

Learn more:

https://brainly.com/question/20163100