Respuesta :
Answer:31.62 m/s
Explanation:
Given
mass of body [tex]m=400 kg[/tex]
Pull on chain is [tex]F_1=6000g N=60 kN[/tex]
Pull get smaller at the rate of [tex]F_2=360g N/m[/tex]
Net Upward Force [tex]F=6000 g-360 g\times 10=24 kN[/tex]
net acceleration [tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{24\times 1000}{m}[/tex]
[tex]a=\frac{24000}{400}[/tex]
[tex]a=60 m/s^2[/tex]
but g is acting downward
[tex]a_{net}=a-g=60-10=50 m/s^2[/tex]
using [tex]v^2-u^2=2 as[/tex]
here initial velocity is zero
[tex]v^2=2\times 50\times 10[/tex]
[tex]v=31.62 m/s[/tex]
The velocity of the body will be "31.62 m/s".
Given:
Mass of body,
- m = 400 kg
Pull on chain,
- [tex]F_1= 6000 \ g.N[/tex]
- [tex]F_2 = 360 \ g.N/m[/tex]
The net upward force will be:
→ [tex]F = 6000-360\times 10[/tex]
[tex]= 6000-3600[/tex]
[tex]= 2400[/tex]
or,
[tex]= 24 \ kN[/tex]
Now,
The net acceleration will be:
→ [tex]a = \frac{F}{m}[/tex]
[tex]= \frac{24\times 1000}{400}[/tex]
[tex]= 60 \ m/s^2[/tex]
But,
"g" is acting downwards then,
→ [tex]a_{net} = a -g[/tex]
[tex]= 60-10[/tex]
[tex]= 50 \ m/s^2[/tex]
By using,
→ [tex]v^2-u^2=2as[/tex]
[tex]v^2= 2\times 50\times 10[/tex]
[tex]= 1000[/tex]
[tex]v = \sqrt{1000}[/tex]
[tex]= 31.62 \ m/s[/tex]
Thus the above answer is right.
Learn more:
https://brainly.com/question/20163100