A school district claims that the average teacher in the district earns $45,000 per year. The teacher's union disputes this claim and argues that the average salary is actually less. A random sample of 20 teachers yields a mean salary of $44,500 with a sample standard deviation of $1,750. What's the P­value for a test of the hypothesis that H0 : m = 44,5 00 and Ha : m < 44,500?

a. .01 < P < .02
b. .02 < P < .025
c. .025 < P < .05
d. .05 < P < .10
e. .10 < P < .15

Respuesta :

Answer:

Option e) 0.10 < P < 0.15

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = $45,000

Sample mean, [tex]\bar{x}[/tex] = $44,500

Sample size, n = 20

Alpha, α = 0.05

Sample standard deviation, s = $1,750

First, we design the null and the alternate hypothesis

[tex]H_{0}: m = 44500\\H_A: m < 44500[/tex]

We use one-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{44500 - 45000}{\frac{1750}{\sqrt{20}} } = -1.2778[/tex]

Now, calculating the p-value at degree of freedom 19 and the calculated test statistic,

p-value = 0.108494

Thus,

Option e) 0.10 < P < 0.15