Answer:
Option e) 0.10 < P < 0.15
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = $45,000
Sample mean, [tex]\bar{x}[/tex] = $44,500
Sample size, n = 20
Alpha, α = 0.05
Sample standard deviation, s = $1,750
First, we design the null and the alternate hypothesis
[tex]H_{0}: m = 44500\\H_A: m < 44500[/tex]
We use one-tailed(left) t test to perform this hypothesis.
Formula:
[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]
Putting all the values, we have
[tex]t_{stat} = \displaystyle\frac{44500 - 45000}{\frac{1750}{\sqrt{20}} } = -1.2778[/tex]
Now, calculating the p-value at degree of freedom 19 and the calculated test statistic,
p-value = 0.108494
Thus,
Option e) 0.10 < P < 0.15