Respuesta :
Answer:
σ = 1.09 mm
Explanation:
Step 1: Identify the given parameters
rod diameter = 20 mm
stiffness constant (k) = 55 MN/m = 55X10⁶N/m
applied force (f) = 60 KN = 60 X 10³N
young modulus (E) = 200 Gpa = 200 X 10⁹pa
Step 2: calculate length of the rod, L
[tex]K = \frac{A*E}{L}[/tex]
[tex]L = \frac{A*E}{K}[/tex]
[tex]A=\frac{\pi d^{2}}{4}[/tex]
d = 20-mm = 0.02 m
[tex]A=\frac{\pi (0.02)^{2}}{4}[/tex]
A = 0.0003 m²
[tex]L = \frac{A*E}{K}[/tex]
[tex]L = \frac{(0.0003142)*(200X10^9)}{55X10^6}[/tex]
L = 1.14 m
Step 3: calculate the displacement of the rod, σ
[tex]\sigma = \frac{F*L}{A*E}[/tex]
[tex]\sigma = \frac{(60X10^3)*(1.14)}{(0.0003142)*(200X10^9)}[/tex]
σ = 0.00109 m
σ = 1.09 mm
Therefore, the displacement at the end of A is 1.09 mm
The displacement at the end will be "1.09 mm".
Force and Displacement
According to the question,
Rod's diameter, d= 20 mm
Stiffness constant, k = 55 M-N/m or,
= 55 × 10⁶ N/m
Force, f = 60 kN or,
= 60 × 10³ N
Young's modulus, E = 200 Gpa or,
= 200 × 10⁹ pa
We know the formula,
→ K = [tex]\frac{A\times E}{L}[/tex]
or,
L = [tex]\frac{A\times E}{K}[/tex]
or,
A = [tex]\frac{\pi d^2}{4}[/tex]
By substituting the values,
= [tex]\frac{\pi(0.02)^2}{4}[/tex]
= 0.0003 m³
The length, L = [tex]\frac{A\times E}{K}[/tex]
= [tex]\frac{0.0003\times 200\times 10^9}{55\times 10^6}[/tex]
= 1.14 m
hence,
The displacement be:
→ σ = [tex]\frac{F\times L}{A\times E}[/tex]
= [tex]\frac{60\times 10^3\times 1.14}{0.0003\times 200\times 10^9}[/tex]
= 0.00109 m or,
= 1.09 mm
Thus the answer above is correct.
Find out more information about force here:
https://brainly.com/question/25573309