Answer:
[tex]5.2728\times 10^{-25}\ kgm/s[/tex]
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
[tex]\Delta x[/tex] = Uncertainity in position = [tex]10^{-10}\ m[/tex]
[tex]\Delta p[/tex] = Uncertainty in momentum
According to the Heisenberg uncertainity principle we have
[tex]\Delta x\Delta p=\dfrac{h}{4\pi}\\\Rightarrow \Delta p=\dfrac{h}{4\pi\Delta x}\\\Rightarrow \Delta p=\dfrac{6.626\times 10^{-34}}{4\pi\times 10^{-10}}\\\Rightarrow \Delta p=5.2728\times 10^{-25}\ kgm/s[/tex]
The minimum uncertainty in its momentum is [tex]5.2728\times 10^{-25}\ kgm/s[/tex]