Respuesta :

Answer:

[tex]\sqrt[7]{x^{4}}[/tex]

[tex](x^{\frac{1}{7}})^{4}[/tex]

[tex](\sqrt[7]{x})^{4}[/tex]

Step-by-step explanation:

we have

[tex]x^{\frac{4}{7}}[/tex]

Remember the properties

[tex]\sqrt[n]{a^{m}}=a^{\frac{m}{n}}[/tex]

[tex](a^m)^{n}=a^{m*n}[/tex]

so

Verify each case

Part 1) we have

[tex]\sqrt[4]{x^{7}}[/tex]

we know that

[tex]\sqrt[4]{x^{7}}=x^{\frac{7}{4}}[/tex]

Compare with the given expression

[tex]x^{\frac{7}{4}} \neq x^{\frac{4}{7}}[/tex]

Part 2) we have

[tex]\sqrt[7]{x^{4}}[/tex]

we know that

[tex]\sqrt[7]{x^{4}}=x^{\frac{4}{7}}[/tex]

Compare with the given expression

[tex]x^{\frac{4}{7}} = x^{\frac{4}{7}}[/tex]

therefore

Is equivalent to the given expression

Part 3) we have

[tex](x^{\frac{1}{7}})^{4}[/tex]

we know that

[tex](x^{\frac{1}{7}})^{4}=x^{\frac{4}{7}}[/tex]

Compare with the given expression

[tex]x^{\frac{4}{7}} = x^{\frac{4}{7}}[/tex]

therefore

Is equivalent to the given expression

Part 4) we have

[tex](x^{\frac{1}{4}})^{7}[/tex]                      

we know that

[tex](x^{\frac{1}{4}})^{7}=x^{\frac{7}{4}}[/tex]

Compare with the given expression

[tex]x^{\frac{7}{4}} \neq x^{\frac{4}{7}}[/tex]

Part 5) we have

[tex](\sqrt[4]{x})^{7}[/tex]

we know that

[tex](\sqrt[4]{x})^{7}=(x^{\frac{1}{4}})^{7}=x^{\frac{7}{4}}[/tex]

Compare with the given expression

[tex]x^{\frac{7}{4}} \neq x^{\frac{4}{7}}[/tex]

Part 6) we have

[tex](\sqrt[7]{x})^{4}[/tex]

we know that

[tex](\sqrt[7]{x})^{4}=(x^{\frac{1}{7}})^{4}=x^{\frac{4}{7}}[/tex]

Compare with the given expression

[tex]x^{\frac{4}{7}} = x^{\frac{4}{7}}[/tex]

therefore

Is equivalent to the given expression