Answer: 0.471 m/s
Explanation:
We are given the followin equation:
[tex]Re=\frac{D v \rho}{\eta}[/tex] (1)
Where:
[tex]Re[/tex] is the Reynolds Number, which is adimensional and indicates if the flow is laminar or turbulent
When [tex]Re<2100[/tex] we have a laminar flow
When [tex]Re>4000[/tex] we have a turbulent flow
When [tex]2100<Re<4000[/tex] the flow is in the transition region
[tex]D=2R[/tex] is the diameter of the pipe. If the pipe ha a radius [tex]R=8(10)^{-3} m[/tex] its diameter is [tex]D=2(8(10)^{-3} m)=0.016 m[/tex]
[tex]v[/tex] is the average speed of the fluid
[tex]\rho=1060 kg/m^{3}[/tex] is the density of the fluid
[tex]\eta=4(10)^{-3} Pa.s[/tex] is the viscosity of the fluid
Isolating [tex]v[/tex]:
[tex]v=\frac{Re \eta}{D \rho}[/tex] (2)
Solving for [tex]Re=2000[/tex]
[tex]v=\frac{(2000)(4(10)^{-3} Pa.s)}{(0.016 m)(1060 kg/m^{3})}[/tex] (3)
Finally:
[tex]v=0.471 m/s[/tex]