Respuesta :
The area calculated by them is 21.
Step-by-step explanation:
The given points are (-4,-2),(-3,-5),(3,-2) and (2,3).
The area of the quadrilateral:
A= [tex]\frac{(x1 y2+x2y3+x3y4+x4y1)-(x2y1+x3y2+x4y3+x1y4) }{2}[/tex].
From the given points,
A=[tex]\frac{(20+6+9-4)-(6-1-4-12) }{2}[/tex]
A=[tex]\frac{(31)-(-11) }{2}[/tex]
A= [tex]\frac{42}{2}[/tex]
The area of the quadrilateral = 21.
Answer:
The are is 28
Step-by-step explanation:
Given:
Point 1: (– 4, – 2)
Point 2: (– 3, – 5)
Point 3: (3, – 2)
Point 4: (2, 3)
then, the coordinates of the first point are x1 = -4, y1 = -2; of the second point x2 = -3, y2 = -5; and so on.
We can compute the area of the quadrilateral with the shoelace formula as follows:
area = 1/2 * |x1*y2 + x2*y3 + x3*y4 + x4*y1 - x2*y1 - x3*y2 - x4*y3 - x1*y4 |
area = 1/2 * |(-4)*(-5) + (-3)*(-2) + 3*3 + 2*(-2) - (-3)*(-2) - 3*(-5) - 2*(-2) - (-4)*3 |
area = 1/2 * 56 = 28